Aromaticity: Modern Computational Methods and Applications
₱13,388.00
Product Description
Evaluating the aromaticity of a molecular system and the influence of this concept on its properties is a crucial step in the development of novel aromatic systems. Modern computational methods can provide researchers with a high level of insight into such aromaticity, but identifying the most appropriate method for assessing a specific system can prove difficult. Aromaticity: Modern Computational Methods and Applications reviews the latest state-of-the-art computational methods in this field and discusses their applicability for evaluating the aromaticity of a system.
In addition to covering aromaticity for typical organic molecules, this volume also explores systems possessing transition metals in their structures, macrocycles and even transition structures. The influence of the aromaticity on the properties of these species (including the structure, magnetic properties and reactivity) is highlighted, along with potential applications in fields including materials science and medicinal chemistry. Finally, the controversial and fuzzy nature of aromaticity as a concept is discussed, providing the basis for an updated and more comprehensive definition of this concept.
Drawing on the knowledge of an international team of experts, Aromaticity: Modern Computational Methods and Applications is a unique guide for anyone researching, studying or applying principles of aromaticity in their work, from computational and organic chemists to pharmaceutical and materials scientists.
Review
An insightful guide on the latest computational tools and approaches for modeling, predicting and manipulating aromaticity in chemical structures
From the Back Cover
Evaluating the aromaticity of a molecular system and the influence of this concept on its properties is a crucial step in the development of novel aromatic systems. Modern computational methods can provide researchers with a high level of insight into such aromaticity, but identifying the most appropriate method for assessing a specific system can prove difficult. Aromaticity: Modern Computational Methods and Applications reviews the latest state-of-the-art computational methods in this field and discusses their applicability for evaluating the aromaticity of a system.
In addition to covering aromaticity for typical organic molecules, this volume also explores systems possessing transition metals in their structures, macrocycles and even transition structures. The influence of the aromaticity on the properties of these species (including the structure, magnetic properties and reactivity) is highlighted, along with potential applications in fields including materials science and medicinal chemistry. Finally, the controversial and fuzzy nature of aromaticity as a concept is discusses, providing the basis for an updated and more comprehensive definition of this concept.
Drawing on the knowledge of an international team of experts, Aromaticity: Modern Computational Methods and Applications is a unique guide for anyone researching, studying or applying principles of aromaticity in their work, from computational and organic chemists to pharmaceutical and materials scientists.
About the Author
Dr. Israel Fernandez (Madrid, 1977) studied Chemistry at the Universidad Complutense de Madrid (UCM). After obtaining his PhD degree (with honors) under the supervision of Prof. M. A. Sierra, he joined the Theoretical and Computational Chemistry group of Prof. G. Frenking at the Philipps-Universität Marburg as a postdoctoral researcher. He received several awards including the Julián Sanz del RÃo award and the Barluenga’s medal. At present, he is Profesor Titular at the UCM. His current research is focused on both the bonding situation of organic and organometallic compounds and their reactivity.